

US009464307B2

(12) United States Patent Horiuchi et al.

(10) Patent No.: US 9,464,307 B2

(45) **Date of Patent:** Oct. 11, 2016

(54) METHOD FOR GENE AMPLIFICATION

(71) Applicant: Genodive Pharma Inc., Kanagawa (JP)

(72) Inventors: Takashi Horiuchi, Aichi (JP); Takaaki

Watanabe, Los Angeles, CA (US)

(73) Assignee: GENODIVE PHARMA INC.,

Kanagawa (JP)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 492 days.

(21) Appl. No.: 13/890,533

(22) Filed: May 9, 2013

(65) **Prior Publication Data**

US 2013/0266988 A1 Oct. 10, 2013

Related U.S. Application Data

(63) Continuation of application No. 12/085,476, filed as application No. PCT/JP2006/314168 on Jul. 18, 2006, now abandoned.

(30) Foreign Application Priority Data

Nov. 24, 2005 (JP) 2005-338119

(51) Int. Cl. C12P 19/34

(2006.01) (2006.01)

C12Q 1/68

(58) Field of Classification Search

None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

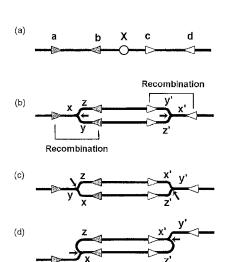
6,255,082 B1 7/2001 Lizardi 2007/0249016 A1 10/2007 Horiuchi et al. 2009/0148895 A1 6/2009 Horiuchi et al.

FOREIGN PATENT DOCUMENTS

EP	1 707 626 A1	10/2006
WO	WO94/14968	7/1994
WO	WO02/40685	5/2002
WO	WO2005/001087	1/2005
WO	WO2005/061703	7/2005
WO	WO2007/060764	5/2007

OTHER PUBLICATIONS

Langer et al. (Nucleic Acids Research, 2002, 30(14):3067-3077).* Campo et al. (2002, Appl. Envr. Microbiol, 68(5):2359-2367).* Branda et al. (Developmental Cell, 2004, vol. 7, p. 6-28, IDS reference).*


Watanabe et al (EMBO journal, 2005, vol. 24, p. 190-198).*
(Continued)

Primary Examiner — Stephanie K Mummert (74) Attorney, Agent, or Firm — Carol L. Francis; Bozicevic, Field & Francis LLP

(57) ABSTRACT

The present invention provides a double-stranded DNA constructed specifically for high speed gene amplification, a method for gene amplification and a method for synthesizing protein. The gene amplification system of the present invention used a site-specific recombinase such as Cre-lox system and target sequence thereof to efficiently induce a type of replication referred to as a double rolling-circle replication (DRCR). Amplification unit, whose structure is shown in FIG. 2 (a), is constructed in animal and other cells. DRCR is induced by two recombination events triggered by a site-specific recombinase (Cre) when each replication folk progresses between each pair of target sequences (lox sequences).

15 Claims, 7 Drawing Sheets

(56) References Cited

OTHER PUBLICATIONS

Watanabe et al., "Gene amplification system based on double rolling-circle replication as a model for oncogene-type amplification," Nucleic Acids Research. vol. 39, No. 16 p. e106 (2011).

Branda, C.S., and Dymecki, S.M., "Talking about a Revolution: The Impact of Site-Specific Recombinases on Genetic Analyses in Mice," Developmental Cell. vol. 6 pp. 7-28 (2004).

Butler et al., "Formation of Large Palindromic DNA by Homologous Recombination of Short Inverted Repeat Sequences in *Saccharomyces cerevisiae*," Genetics. vol. 161 pp. 1065-1075 (2002). Campo et al., "Cre-*loxP* Recombination System for Large Genome Rearrangements in *Lactococcus lactis*," Applied and Environmental Microbiology. vol. 68, No. 5 pp. 2359-2367 (2002).

Dong, Z., and Fasullo, M., "Multiple recombination pathways for sister chromatid exchange in *Saccharomyces cerevisiae*: role of *RAD1* and the *RAD52* epistasis group genes," Nucleic Acids Research. vol. 31, No. 10 pp. 2576-2585 (2003).

Extended European Search Report corresponding to European Patent Application No. 06768267.4-1222 dated Jun. 4, 2010.

Genbank Accession No. AF298782. Guldener et al., "A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast," Nucleic Acids Research. vol. 30, No. 6 p. E23 (2002)

Genbank Accession No. NC-001138. Goffeau et al., "Life with 6000 genes," Science. vol. 274, No. 5287 p. 546 (1996).

International Preliminary Report on Patentability (Chapter I of the Patent Cooperation Treaty) corresponding to International Patent Application No. PCT/JP2004/016833 dated Jul. 24, 2006.

International Preliminary Report on Patentability (Chapter I of the Patent Cooperation Treaty) corresponding to International Patent Application No. PCT/JP2006/314168 dated May 27, 2008.

International Search Report corresponding to International Patent Application No. PCT/JP2004/016833 dated May 17, 2005.

International Search Report corresponding to International Application No. PCT/JP2006/314168 dated Sep. 12, 2006.

Interview Summary corresponding to U.S. Appl. No. 12/085,476 dated Oct. 25, 2011.

Interview Summary corresponding to U.S. Appl. No. 12/085,476 dated Mar. 12, 2013.

Kim et al., "In vivo excision and amplification of large human genomic segments using the Cre/loxP-and large T antigen/SV40 ori-mediated machinery," Journal of Biotechnology. vol. 110, No. 3 pp. 227-233 (2004).

Kraus et al., "Break-induced replication: A review and an example in budding yeast," PNAS. vol. 98, No. 15 pp. 8255-8262 (2001). Langer et al., "A genetic screen identifies novel non-compatible *loxP* sites," Nucleic Acids Research. vol. 30, No. 14 pp. 3067-3077 (2002).

Lankenau et al., "Knockout Targeting of the *Drosophila Nap1* Gene and Examination of DNA Repair Tracts in the Recombination Products," Genetics. vol. 163, No. 2 pp. 611-623 (2003).

Malkova et al., "RAD51-independent break-induced replication to repair a broken chromosome depends on a distant enhancer site," Genes & Development. vol. 15, No. 9 pp. 1055-1060 (2001).

Merker et al., "Patterns of Heteroduplex Formation Associated With the Initiation of Meiotic Recombination in the Yeast *Saccharomyces cerevisiae*," Genetics. vol. 165, No. 1 pp. 47-63 (2003).

Narayanan et al., "The Pattern of Gene Amplification is Determined by the Chromosomal Location of Hairpin-Capped Breaks," Cell. vol. 125, No. 7 pp. 1283-1296 (2006).

Official Action corresponding to U.S. Appl. No. 10/580,424 dated Apr. 21, 2008.

Official Action corresponding to U.S. Appl. No. 12/085,476 dated Sep. 15, 2010.

Official Action corresponding to U.S. Appl. No. 12/085,476 dated Jan. 5, 2011.

Official Action corresponding to U.S. Appl. No. 12/085,476 dated Jul. 11, 2011.

Official Action corresponding to U.S. Appl. No. 12/085,476 dated Mar. 1, 2012.

Official Action corresponding to U.S. Appl. No. 12/085,476 dated Nov. 9, 2012.

Rattray et al., "A mechanism of palidromic gene amplification in *Saccharomyces cerevisiae*," Genes and Development. vol. 19 pp. 1390-1399 (2005).

Rattray et al., "Fidelity of Mitotic Double-Strand-Break Repair in *Saccharomyces cerevisiae*: A Role for *SAE2/COM1*," Genetics. vol. 158, No. 1 pp. 109-122 (2001).

Richardson et al., "Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations," Genes & Development. vol. 12 pp. 3831-3842 (1998).

Sektas, M., and Specht, M., "Limited use of the Cre/IoxP Recombination system in efficient production of IoxP-containing minicircles in vivo," Plasmid. vol. 53, No. 2 pp. 148-163 (2005). Signon et al., "Genetic Requirements for *RAD51*- and *RAD54*-Independent Break-Induced Replication Repair of a Chromosomal Double-Strand Break," Molecular and Cellular Biology. vol. 21, No. 6 pp. 2048-2056 (2001).

Stark, G.R., and Wahl, G.M., "Gene Amplification," Ann. Rev. Biochem. vol. 53 pp. 447-491 (1984).

Volkert, F.C., and Broach, J.R., "Site-specific recombination promotes plasmid amplification in yeast," Cell. vol. 46, No. 4 pp. 541-550 (1986).

Watanabe, T., and Horiuchi, T., "A novel gene amplification system in yeast based on double rolling-circle replication," The Embo Journal. vol. 24, No. 1 pp. 190-198 (2005).

Watanabe, T., and Horiuchi, T., "Development of a novel gene amplification system utilizing break-induced replication," The Molecular Biology Society of Japan Program. vol. 26 p. 418 (2003).

* cited by examiner

Figure 1

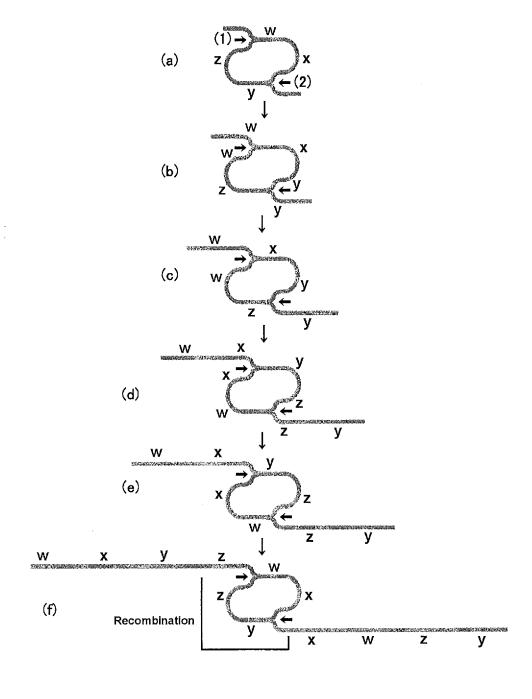
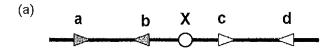
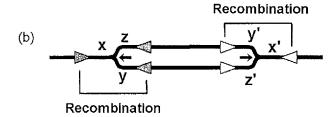
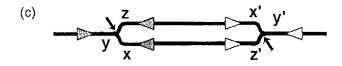





Figure 2

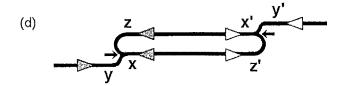


Figure 3

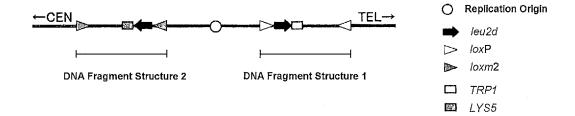
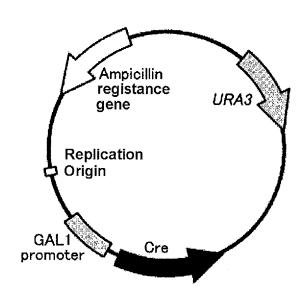
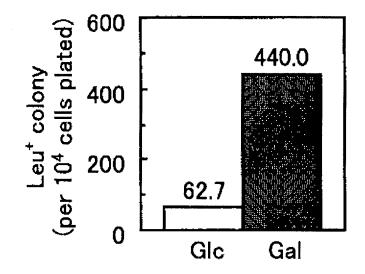
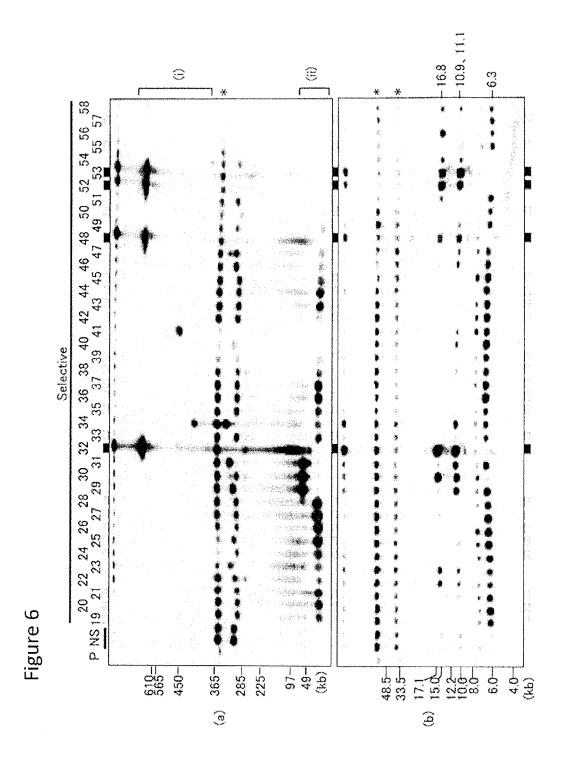
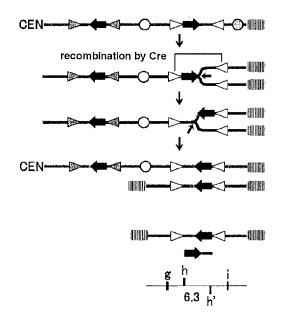


Figure 4


Figure 5

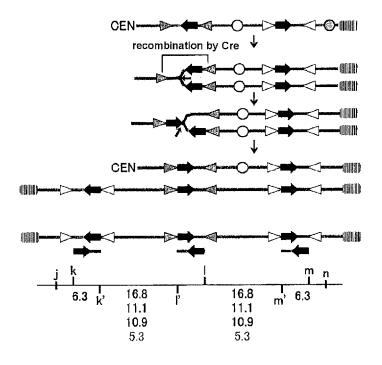

(g 3 10.9 16.8 10.9 1.0.0 Recombination 16.8 11.1 10.9 5.3 DRCR 10.9 16.8 10.9 5.3 - 16.8 10.9 10.9 €.5 10.9 16.8 10.9 5.3

Figure 8

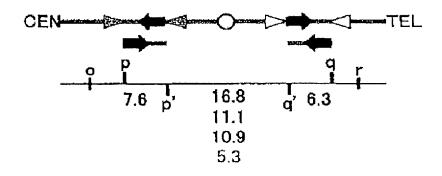

- Replication Origin
- Replication Origin at telomere side
- ➡ leu2d
- loxP
- telomere

Figure 9

- Replication Origin
- Replication Origin at telomere side
- leu2d
- > loxP
- loxm2
- telomere

Figure 10

METHOD FOR GENE AMPLIFICATION

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 12/085,476, filed on May 23, 2008, which is a national stage application of International Application No. PCT/JP2006/314168, filed on Jul. 18, 2006, and which claims benefit of Japanese Patent Application No. 2005-338119 filed Nov. 24, 2005, the disclosures of each of which are incorporated herein in their entireties.

CROSS-REFERENCE TO RELATED **DOCUMENTS**

This application comprises a sequence listing filed in electronic form as an ASCII .txt file entitled 1680-26-The content of the sequence listing is incorporated herein in its entirety.

FIELD OF THE INVENTION

The present invention relates to a method for amplifying gene at high speed and a method for producing proteins by using the amplified gene.

PRIOR ART

Gene amplification with cultured animal cells (Reference 1 and the like) accompanies several complications such as (1) time consuming (a half to one year), (2) presence of clones without amplification, and (3) empirical procedures 35 with unexplained mechanism. On the other hand, there is no system of gene amplification with yeast. Although plasmids are generally used for the purpose, increase in copy number beyond a certain threshold is difficult.

The system of the present invention is based on the 40 replication referred to as DRCR (Double Rolling-Circle Replication) induced by biological potency called as BIR (Break-Induced-Replication) (Reference 2-4). It is conceivable that a chromosome breakage is rescued itself by the following steps; i.e. the broken chromosome finds homolo- 45 gous sequence, invades into it, forms a replication fork, and consequently starts DNA replication. All living organisms might involve such ability.

Moreover, it is reported that natural circular DNA accompanies DRCR by recombination (Reference 5).

Reference 1: Japanese Patent Gazette 8-504585 (WO94/ 14968) Reference 2: WO2005/061703

Reference 3: PNAS, vol. 98, no. 15, 8255-8262 (Jul. 17,

Reference 4: Genes Dev 12, 3831-3842 (1998)

Reference 5: Cell. 1986 Aug. 15; 46 (4): 541-550

Problems to be Solved by the Invention

The present invention provides a double-stranded DNA 60 constructed specially for high speed gene amplification, a method for gene amplification thereby and protein production thereby. The present invention is characteristic in full artificially designed system of gene amplification, the potential of higher amplification efficiency by synchronous cul- 65 ture, short period for amplification (probably one generation) and well elucidated mechanism of amplification.

2

Means to Solve the Problems

The amplification system of the present invention utilizes a type of DNA replication referred to as double rolling-circle replication (DRCR). The type of replication is able to amplify DNA explosively in a single cell cycle. It is assumed that the amplified products are maintained intracellularly after termination of DRCR by recombination and the like. The present inventors utilized a site-specific recombinase such as Cre-lox system and its target sequence in order to induce DRCR efficiently. More specifically, the present inventors constructed a replication unit (ex. FIG. 3) in yeast and were able to succeed in inducing DRCR by utilizing a recombination generated by a site-specific Cre recombinase (hereinafter, referred to as "Cre") during progress of a replication fork between a pair of lox sequences and to accomplish the present invention.

Namely, the present invention is a double-stranded DNA 2ST25.txt, created May 9, 2013, 2200 bytes (22 kilobytes). 20 represented by a-b-c-d or a-c-b-d, wherein one of a and b is a double-stranded DNA fragment comprising a first target sequence of a site-specific recombinase, and the other is a double-stranded DNA fragment comprising an inverted sequence of said first target sequence; and one of c and d is a double-stranded DNA fragment comprising a second target sequence of the site-specific recombinase and the other is a double-stranded DNA fragment comprising an inverted sequence of said second target sequence; a replication origin and at least one target gene to be amplified are inserted 30 anywhere between a and d; and arbitrary DNA sequences may be inserted among above fragments.

> Additionally, the present invention is a recombinant vector comprising the double-stranded DNA, and is also a transformant, which is introduced with the double-stranded DNA.

> Moreover, the present invention is a set of doublestranded DNA comprising a double-stranded DNA fragment represented by e-a-A-b-f and a double-stranded DNA fragment represented by g-c-B-d-h, wherein one of a and b is a double-stranded DNA fragment comprising a first target sequence of a site-specific recombinase, and the other is a double-stranded DNA fragment comprising an inverted sequence of said first target sequence; and one of c and d is a double-stranded DNA fragment comprising a second target sequence of the site-specific recombinase and the other is a double-stranded DNA fragment comprising an inverted sequence of said second target sequence; each of letters from e to h is a double-stranded DNA fragment of at least 50 bp in size, which are arranged on a chromosome or an extrachromosomal element that is a host for integration of the set of double-stranded DNA in order of e, f, a replication origin of the chromosome element or the extrachromosomal element, g and h; at least one of A and B represents the target gene to be amplified; and said replication origin or a part of it may be included in f or g; and an arbitrary DNA sequence may be inserted among these.

> The present invention is also a set of recombinant vectors, wherein each vector contains each of two kinds of the double-stranded DNA, and is also a transformant or transfectant, which is introduced with two kinds of the doublestranded DNA, wherein said replication origin locates on a host chromosome or an extrachromosome.

The present invention is also a method for amplifying the target gene, comprising the steps of preparing the transformant or the transfectant and affecting said transformants with the site-specific recombinase; and is a method for manufacturing a protein encoded by the target gene, com-

prising a step of culturing transformed or transfected cells obtained by the above method.

Effects of the Invention

The amplification system of the present invention has an excellent property in establishing efficient system for producing proteins. DRCR is capable of amplifying a target gene rapidly during a single cell cycle. Since the amplification mechanism is well elucidated, reliable amplification of a target gene is prospective. Although the present example was constructed in yeast not animal cells, it is possible to produce highly amplified products at 10 to 100 times higher frequency than a conventional system of animal cultured cells. Furthermore, the present system can be applied to primary cultured cells, in which gene amplification by drug selection has not been observed. Therefore, it is possible to apply gene amplification to targeting cells of gene therapy, and to enhance and sustain the expression of introduced gene.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a DRCR reaction. Black arrowheads show replication folks.

FIG. 2 shows the initiation of the amplification reaction by using a site-specific recombinase and its target sequences. The triangular arrowheads (letters from a to d) represent the target sequences (e.g. loxP sequence) of a site-specific recombinase and the direction thereof. X represents replication origin (and so forth). Letters from x to z and x' to z' represent genes to be amplified. Black arrows represent replication folks.

FIG. ${\bf 3}$ shows a construct for amplification. CEN: centromere, TEL: telomere.

FIG. 4 shows a plasmid (pSH47) for Cre expression.

FIG. 5 shows a colony forming frequency. Glc: glucose, Gal: galactose.

FIG. 6 shows the Southern blot analysis. (a) shows chromosomal DNA separated by PFGE and probed with 40 leu2d, and (b) shows chromosomal DNA digested by SmaI and then separated by FIGE. Lane numbers from #19 to 58 show DNA prepared from colonies grown on the selective medium without leucine after Cre induction by galactose. NS shows DNA from control colonies grown on non-45 selective medium. P shows host cell lines. In this PFGE conditions, chromosomes with longer than about 650 kb are deemed to be concentrated above the separation limit.

FIG. 7 shows amplified products on chromosome. (a) shows the structure initially generated by DRCR. Letters 50 from a to f represent the cleavage sites by restriction enzyme SmaI and digits show fragment size (kb). Nevertheless, 5.3 kb fragments generated by d-e cleavage are not detected by the Southern blotting, since the fragments do not include leu2d. (b) shows the structure with inversion (rearrangement 55 to reverse direction) of the sequence between lox. Letters from a' to f' represent cleavage sites changed by inversion, and digits show predicted fragment size (kb). For example, a-b cleavage produces 10.9 kb fragment. In a case of inversion of the region containing a, a'-b cleavage produces 60 16.8 kb fragments. Similarly, a-b' cleavage produces 5.3 kb fragment and a'-b' cleavage produces 11.1 kb fragment. The 5.3 kb fragment, which does not contain leu2d gene, is undetectable by the Southern blotting.

FIG. 8 shows amplified products on a mini chromosome 65 (FIG. 6 (ii)). Replication from the telomere side proceeds to reverse direction due to recombination between loxP, and

4

produces mini chromosome (about 18 kb in size) with telomere at the both ends. The Smal cleavage sites from g to i and site h' changed by inversion produce 6.3 kb fragments containing leu2d (The fragment is derived from g-h' or h-i fragment. The fragment g-i cannot be generated because of cleavage at either h or h' site).

FIG. 9 shows amplification products on a mini chromosome (FIG. 6 (ii)). Replication from the telomere side proceeds to reverse direction due to recombination between loxm2 and produces a mini chromosome (about 40 kb in size). Letters from j to n represent Smal cleavage sites and letters from k' to m' represent cleavage sites changeable by inversion. Digits show possible fragment size (kb). The 5.3 kb fragment, which does not contain leu2d gene, is undetectable by the Southern blotting.

FIG. 10 shows the effect of Cre recombination on not amplified structure. The sequences between lox pairs can be frequently inverted. Letters from o to r represent Smal cleavage sites, p' and q' represent the cleavage sites change20 able by inversion and digits show possible fragment size (kb). The 5.3 kb fragment, which does not contain leu2d gene, is undetectable by the Southern blotting.

DETAILED DESCRIPTION OF THE INVENTION

The gene amplification method of the present invention utilizes a double rolling-circle replication (DRCR), which enables a rapid amplification, and is presumed to be functional both in budding yeasts and in animal cells. The gene amplification system is a type of DNA replication, wherein two replication folks replicate continuously a circular DNA, as shown in FIG. 1. In the beginning, folk (1) replicates w and folk (2) replicates y ((a), (b), (c)), then folk (1) and folk (2) replicates x and folk (2) replicates z ((c), (d), (e)). In this way, the replication continues endlessly, since a template for one folk is synthesized by the other folk successively.

After the amplification has proceeded, the central circular form seems to be removed by recombination and the like, and the reaction seems to be terminated (f).

The gene amplification system of the present invention utilizes a site-specific recombination, which is known to be functional even in animal cells, in order to induce DRCR. This reaction is a reversal of DNA replication by recombination during progression of the replication folk between a set of target sequences. A pair of the reactions is used for the amplification system.

Namely, in the amplification system of the present invention, firstly, DNA replication starts in the amplification unit constructed as in FIG. 2 (a). Secondly, the two replication folks represented by black arrows go just between two sets of target sequences (lox sequences) of a site-specific recombinase (e.g. Cre). Lastly, the target sequences (e.g. loxP sequences) on parent DNA strand x and x' recombine with the target sequences (e.g. loxP sequences) on de novo DNA strand y and y', respectively. After the recombination events, one of the folks synthesizes y and z strands from x strand and the other folk synthesizes y' and z' strands from x' strand (FIG. 2 (c)). In this way, the progress of each replication folk is reversed and the replicated DNA strands are replicated again (FIG. 2 (d)). DRCR is carried out by these two reactions.

The double-stranded DNA used in the present invention is represented by a-b-c-d or a-c-b-d, or preferably by a-b-c-d.

One of a and b represents a double-stranded DNA fragment comprising a first target sequence of a site-specific recombinase, and the other represents a double-stranded

DNA fragment comprising inverted sequence of the first target sequence of the site-specific recombinase. One of c and d represents a double-stranded DNA fragment comprising a second target sequence of a site-specific recombinase, and the other represents a double-stranded DNA fragment comprising inverted sequence of the second target sequence of the site-specific recombinase. The first target sequence could be the same as the second target sequence, but is preferably different from the later. Additionally, arbitrary DNA sequence may be inserted between these sequences.

5

The above b and c may be combined and the DNA may be represented by a-b-d, wherein d and a represent the same target sequence with the same direction.

Moreover, the sequence may be represented by a-b-X-c-d or a-c-X-b-d, preferably by a-b-X-c-d, wherein X represents a replication origin. The replication origin includes Ori beta located at the 3' down stream of dihydrofolate reductase (DHFR) gene, latent origin (OriP) of EBV, origins located at the vicinity of c-myc gene or others, as a candidate, and may 20 include any origin with replication initiation activity in animal cells.

Furthermore, the sequence may be represented by a-A-b-X-c-B-d or a-A-c-X-b-B-d, preferably by a-A-b-X-c-B-d, wherein at least one of A and B represents target gene. If a ²⁵ number of target genes are used, they can be the same as or different from each other. DRCR (FIG. **2**) explained above are similarly induced in these sequences.

A site-specific recombinase catalyzes the recombination between two short consensus DNA sequences (target sequences). The site-specific recombinase can induce site-specific recombination between the target sequences, change the target site further and modify the integrated gene.

The present invention may use the following site-specific recombinase and the target sequences specific to the recombinase (i.e. see; Developmental Cell, Vol. 6, 7-28, January 2004 and the like).

(1) Cre Recombinase or Derivatives Thereof.

Cre recombinase of bacterial virus P1 is applied most 40 extensively to gene transfer and knockout in mouse. Cre protein catalyzes the recombination between two 34 base pair loxP recognition sites. The loxP sequence has a unique construction, wherein core 8 base pair sequence is flanked by two 13 base pair palindrome sequences. The asymmetric 45 8 base pair sequence determine the orientation of loxP site. DNA cleavage and recombination between loxP sites by Cre enzyme occur at a site between the rear of the first base and the front of the last base of the 8 base pair core sequence. Derivatives of the Cre enzyme are constructed by amino 50 acid substitutions. The derivatives include site-specific recombinases, wherein wild type Cre recombinase is changed in its function and character by introduction of amino acid substitution; and site-specific recombinases and their genes, wherein mutations are introduced into wild type 55 Cre recombinase gene to optimize CpG content, Kozak sequence related to translation initiation efficiency and codon-usage in host cells to increase expression efficiency and level. At least 29 kinds of Cre enzyme derivatives have been constructed. Derivatives thereof have different recom- 60 bination activities and recognize different target sequences. Also, a number of mutated sequences are prepared for target sequence recognized by Cre enzyme. The present invention may use all above derivatives. Target sequences like above include loxP, lox511, lox5171, lox2272, lox2372, loxm2 (referred also as m2), loxFAS, lox71, lox 66 and mutants thereof. The mutant refers to a target sequence of site-

specific recombination, wherein the sequence contains mutation introduced in one or more bases in wild type loxP sequence.

Although the recombination efficiency is generally sensitive to any change in lox sequences, mutants keeping function thereof were found. In the latter case, recombination may occur efficiently between pairs of homotypic loxP sites, but not between heterotypic sites.

(2) Flp Recombinase or Derivatives Thereof.

The recombinase is Flp recombinase derived from budding yeast. The activity of the recombinase is similar or slightly inferior to that of Cre/loxP. However, the activity of the recently developed active type Flp (Flpe) is improved and is similar to that of Cre. The consensus 34 base recombination sequence is referred to as FRT. Although the structure of FRT has the same structure as loxP, the sequence is different from each other.

Derivatives thereof refer to site-specific recombinases, wherein wild type Flp recombinase is changed in its function and character by introduction of amino acid substitution; and site-specific recombinases and their genes, wherein mutations are introduced into wild type Flp recombinase gene to optimize CpG content, Kozak sequence related to translation initiation efficiency and codon-usage in host cells to increase expression efficiency and level. At least 28 kinds of Flp enzyme derivatives have been constructed.

A number of derivatives have been constructed also for Flp enzyme and its recognition sequence. The target sequence includes FRT, F3, F5, FRT mutant-10, FRT mutant+10 and mutants thereof. The mutant refers to a target sequence of site-specific recombination reaction, wherein the sequence contains mutation introduced in one or more bases of wild type FRT sequence and the like.

Flp enzyme is very sensitive to the change in the sequence of FRT site, similar to Cre enzyme. Several mutant FRT pairs that lead to efficient recombination between homotypic sites are identified. However, recombination does not occur between different mutant FRT sites or between wild and mutant sites.

(3) PhiC31 Integrase or Derivatives Thereof.

PhiC31 integrase is derived from bacterial virus in Streptomyses and is functionable in human cells. The target sequence of the integrase includes attP, attB and their mutants. A mutant refers to a target sequence of the site-specific recombination, wherein the sequence contains mutation in one or more bases in wild type attP sequence and the like.

The enzyme induces recombination between a pair of three nucleotides, ttg, in the attPP' and attBB'. Since the sequences at both sides of 'ttg' are unique, the sequences are changed to different sequences from the original recognition sequences after recombination. Therefore, the enzyme cannot recognize the consequent sequence as a target site. Therefore, the recombination by the enzyme occurs only once

The derivatives of PhiC31 integrase system refer to site-specific recombinases, wherein wild type PhiC31 integrase is changed in its function and character by introduction of amino acid substitution, and site-specific recombinases and their genes, wherein mutations are introduced into wild type PhiC31 integrase gene to optimize CpG content, Kozak sequence related to translation initiation yield and codonusage in host cells to increase expression efficiency and level.

Cre/Lox system is preferable among the site-specific recombinase and target sequence thereof.

6

Furthermore, it is preferable that a target gene to be expressed, selective gene (drug resistant genes for Geneticin, Neomycin, Hygromycin, Zeocin, Blasticidin or the like) for selecting cells that contain the present construct in a chromosome or an extrachromosomal element, and a marker 5 gene (dihydrofolate reductase (DHFR), glutamine synthetase (GS), aspartate transcarbamylase (CAD), metallothionein (MT), adenosine deaminase (ADA), adenylate deaminase (AMPD1,2), UMP synthetase, P-glycoprotein (P-gp), asparagine synthetase (AS), ornithine decarboxylase (ODC) or the like) for selecting cells with gene amplification may be inserted in arbitrary site within the structure. It is preferable to insert nuclear matrix attachment region (MAR) DNA, which is deemed to be important for amplification in 15 animal cells. Additionally, arbitrary DNA sequence could be inserted between the above fragments.

The above fragments are appropriately connected by conventional method of genetic engineering.

The double-stranded DNA fragments thus obtained are 20 transduced into appropriate cells by the methods of virus, lipofection, electroporation or the like. Furthermore, it is preferable to establish cell lines by selecting the cells that contain the above construct on a chromosome or an extrachromosomal element, by the drug corresponding a drug 25 resistant gene (a drug resistant gene to Geneticin, Neomycin, Hygromycin, Zeocin, Blasticidin or the like). Yeast cells and animal cells can be used as the host. Pharmaceutical proteins are produced preferably in animal cells, wherein glycosylation pattern is similar to human and it reduces risk to 30 undesirable immunological response. Animal cells include CHO (Chinese hamster ovary) cells used frequently for protein production as well as other cells derived from human, mouse, rat and other animals.

Furthermore, the double-stranded DNA of the present 35 invention comprises one set of double-stranded DNA fragments obtained by dividing any of the above double-stranded DNA fragments into at least two, preferably 2 to 5, and more preferably two, wherein the DNA fragment comprises partial sequence of a host chromosome or an extrachromosomal element, and may contain at least 50 bp and preferably from 500 to 1 Kbp sequences at both ends for homologous recombination. The double-stranded DNA fragment for homologous recombination can produce the above double-stranded DNA on a host chromosome or an extrachromosomal element by homologous recombination.

The replication origin may be replication origin of the host chromosome or an extrachromosomal element; or an exogenous replication origin.

Moreover, the extrachromosomal element refers to replicable sequence in host cells derived from plasmid or virus, fragments of a host chromosome or an artificial chromosome.

A set of double-stranded DNA fragments thus described include the following examples:

- (1) Double-stranded DNA referred to as e-a-A-b-f and double-stranded DNA referred to as g-c-B-d-h;
- (2) Double-stranded DNA referred to as e-a-A-f and double-stranded DNA referred to as g-b-c-B-d-h;
- (3) Double-stranded DNA referred to as e-a-f and double- 60 stranded DNA referred to as g-A-b-c-B-d-h;
- (4) Double-stranded DNA referred to as e-a-A-b-c-f and double-stranded DNA referred to as g-B-d-h;
- (5) Double-stranded DNA referred to as e-a-A-b-c-B-f and double-stranded DNA referred to as g-d-h;
- (6) Double-stranded DNA referred to as e-a-A-b-B-f and double-stranded DNA referred to as g-d-h;

8

- (7) Double-stranded DNA referred to as e-a-A-f and double-stranded DNA referred to as g-B-d-h;
- (8) Double-stranded DNA referred to as e-a-f and double-stranded DNA referred to as g-A-b-B-d-h.

In the above sets of double-stranded DNA, letters from a to d, A and B are similar to the above description. However, d in (6) to (8) refers to the same target sequence with the same orientation as "a".

Letters from e to h refer to the double-stranded DNA fragments comprising nucleotide sequences with size at least 50 bp, and preferably from 500 to 1 Kbp, wherein these DNA fragments are aligned in the order of e, f, replication origin, g, and h on a cellular chromosome or on an extrachromosomal element; and arbitrary sequence may be inserted between these fragments; and replication origin or a part of it may be included in f or g.

These fragments are connected as above.

At least two double-stranded DNA fragments thus obtained are introduced into appropriate cells by methods such as virus, lipofection, electroporation and the like. Furthermore, it is preferable to establish cell lines by selecting the cells that contain the above construct on a chromosome or an extrachromosomal element, by the drug corresponding a drug resistant gene (a drug resistant gene corresponding to Geneticin, Neomycin, Hygromycin, Zeocin, Blasticidin or the like). Yeast cells and animal cells can be used as the host. Pharmaceutical proteins are produced preferably in animal cells, wherein glycosylation pattern is similar to human and it reduces risk to undesirable immunological response.

Owing to the arrangement from e to h in the order and homologous recombination of these fragments with corresponding region in a host chromosome or an extrachromosomal element, similar construction to the above is generated on a host chromosome or on an extrachromosomal element.

The transformed or transfected cells thus obtained are subjected to the action of a site-specific recombinase. At the time of the action, it is preferable that site-specific recombinase works in the cells that are actively proliferating and progressing the cell cycle, or are synchronized in S phase, since enrichment of cells in replication phase (S phase) in cell cycle is preferable.

Methods for introducing the above site-specific recombinase include, for example, a method comprising the following steps:

(1) introducing a plasmid constructed to express said sitespecific recombinase;

Various expression vectors are inserted with the sitespecific recombinase gene under the control of promoter functional in a host cell. The vector is transfected into the above transformed or transfected cells by lipofection, electroporation method or the like. It is preferable to use inducible promoters to induce site-specific recombinase to actively proliferating cells.

(2) transforming the transformants or transfectants further to express said site-specific recombinase;

A construct, containing the site-specific recombinase gene under the control of promoter functional in a host cell and any of drug resistant genes against Geneticin, Neomycin, Hygromycin, Zeocin, Blasticidin or the like for selecting cells that contain the above construct on a chromosome or an extrachromosomal element, is prepared. The construct is introduced into the above transformed cells by lipofection, electroporation or the like. The construct containing the above DNA fragments is preferably linearized for efficient integration into a chromosome or to an extrachromosomal

element. Additionally, inducible promoters are preferably used to induce site-specific recombinase to actively proliferating cells.

(3) introducing directly said site-specific recombinase protein.

Site-specific recombinase is prepared by expressing and purifying large amount of the enzyme. The enzyme is introduced into the above transformed cells using commercial protein delivery reagent (i.e. Targeting System Co., Profect; Genlantis Co., BioPORTER Protein Delivery 10 Reagent) and the like. It is preferable to introduce the site-specific recombinase into cells actively proliferating and progressing the cell cycle, or into cells synchronized in S phase, since the site-specific recombinase should be induced into actively proliferating cells.

In the stage, wherein the site-specific recombinase acts, one of the replication folks must be located between two first target sequences and the other replication folk must be located between two second target sequences after initiation of the replication (FIG. $2\ (b)$). However, it is not necessary 20 that all of the prepared cells are affected with the site-specific recombinase in such a specific situation. Since practically DNA replication in a number of cells is in various situations, it is enough for part of cells to be in such a specific situation. The target gene is amplified explosively in 25 the cells in the above situation. Therefore, only a fraction of cells are good enough to be amplified.

Although amplification is induced as above description, it is preferable to select the cells with amplified DNA by drugs corresponding to target gene to be amplifieds (dihydrofolate 30 reductase (DHFR), glutamine synthetase (GS), aspartate transcarbamylase (CAD), metallothionein (MT), adenosine deaminase (ADA), adenylate deaminase (AMPD1, 2), UMP synthetase, P-glycoprotein (P-gp), asp aragine synthetase (AS), ornithine decarboxylase (ODC) and the like). Those 35 cell lines with high level of expression of a target gene are thus selected, and cultured. Large amount of the protein encorded by the target gene is prepared by purification from the culture medium or supernatant.

The following examples illustrate the present invention, 40 but are not intended to limit the scope of the present invention.

Example 1

In this example, a construct (FIG. 3) for amplification was composed.

Firstly, a DNA fragment structure 1 (structure of telomere side) was constructed, wherein the DNA fragment structure 1 contains a pair of loxP sequences with inverted arrangement, amplification-selection marker gene leu2d, and TRP1 gene, (SEQ ID NO.1, bases 1-34 of structure 1 is loxP 50 sequence, bases 36-1988 is amplification marker gene leu2d, bases 1993-2845 (complementary strand) is TRP1 gene, and bases 5699-5732 is loxP sequence of inversion).

A DNA fragment was constructed, wherein the DNA fragment structure 1 is linked PCR fragment of bases 55 263177-264016 (SEQ ID No. 3) of chromosome 6 (Genebank Accession No. NC_001138) to the upstream of the DNA fragment structure 1 and linked PCR fragment of bases 264017-264685 (SEQ ID No. 4) of chromosome 6 (Genebank Accession No. NC_001138) to the downstream of the 60 DNA fragment structure 1. Host yeast cells lines were transformed with the DNA fragment by Frozen-EZ Yeast Transformation II (ZYMO RESEARCH Co.). TRP1 marker gene allows cells to form colonies on agarose medium without tryptophan. The chromosomal structure of the 65 selected cells was analyzed and cell lines with inserted structure flanked by loxP pair were established.

10

Then, DNA fragment structure 2 (structure of centromere side) was constructed, wherein the DNA fragment structure 2 contains a pair of loxm2 sequences with inverted arrangement, amplification-selection marker gene leu2d, and LYS5 gene, ((SEQ ID NO.2, bases 1-34 of structure 2 is loxm2 sequence, bases 3936-5888 (complementary strand) is amplification marker gene leu2d, bases 2891-3930 is LYS5 gene, and bases 5890-5923 is loxm2 sequence of inversion))

A DNA fragment was constructed, wherein the DNA fragment structure 2 is linked PCR fragment of bases 257941-258821 (SEQ ID No. 5) to the upstream of the DNA fragment structure 2 and linked PCR fragment of bases 258822-259719 (SEQ ID No. 6) to the downstream of the DNA fragment structure 2. The DNA fragment was introduced into cells containing the above DNA structure 1 (a structure flanked by loxP pair). LYS5 marker gene allows cells to form colonies on agarose medium without lysine. The chromosomal structure of the selected cells was analyzed and cell lines with inserted structures flanked by loxP pair and loxm2 pair were established.

Additionally, amplification-selection marker gene leu2d lacks most of the promoter sequence and the expression level is very law. Therefore, the gene can complement leucine auxotrophy only when amplified.

It has been observed that Orc1 protein involved in replication initiation binds to the region between the above two DNA fragment structures (nature, 424: 1078, 2003). Therefore, the DNA region is supposed to be functional as replication origin. Furthermore, the DNA region contains WTTTAYRTTTWB (SEQ ID No.: 7), which is a consensus sequence of replication origin in Saccharomyces cerevisiae (bases 258889-258900).

Example 2

In this example, the construct (FIG. 3) obtained in Example 1 was inserted to chromosome 6 of Saccharomyces cerevisiae, Cre gene was expressed and the double rolling-circle replication (DRCR) was induced.

The plasmid (FIG. 4, Genebank Accession No. AF298782, gifted from University of Washington, Yeast Resource Center), wherein Cre gene (SEQ ID No.:8) is linked to the down stream of GAL promoter, was introduced into Saccharomyces cerevisiae cell line obtained in Example 1 by Frozen-EZ Yeast Transformation II (ZYMO RESEARCH). Furthermore, URA3 marker gene allows cells to form colonies on agarose medium without uracil.

The Ura+ cells with the plasmids obtained above were cultured for three hours in liquid medium supplemented with galactose to induce Cre expression or glucose to suppress Cre expression as control. These cells were plated on glucose agar plate without leucine and then Leu+ colonies were counted. The Leu+ cells were further cultured and chromosomal DNA was prepared using low-melting temperature agarose.

The chromosomal DNA was separated by pulsed-field gel electrophoresis (PFGE, BIO-RAD, CHEF Mapper XA, Auto Algorithm, range: size from 220 to 500 kb), or the DNA digested with a restriction enzyme, SmaI, was separated by Field-inversion gel electrophoresis (FIEG, BIO-RAD, CHEF Mapper XA, Auto Algorism, range: size from 3 to 50 kb) and were analyzed by Southern blotting. Result and Interpretation

The Leu⁺ colony counts showed that there was about seven folds increase in colony forming activity in the case of induction of Cre expression in contrast to the control (addition of glucose) the induction of Cre expression gave about seven-fold higher frequency of Leu⁺ colonies than the

control condition as shown in FIG. 5. The result strongly suggests that the Cre recombination contributes to the amplification.

11

Then, FIG. **6** (*a*) shows the result of structural analysis of chromosomal DNA, which is separated by PFGE, by Southern blotting using leu2d as a probe. As shown in FIG. **6**(*a*), amplified product (i) on chromosome 6, wherein the construct for amplification is inserted, and (ii) multi-copies of mini-chromosome were detected. Additionally, chromosome 3 (*) of host cell lines containing leu2 fragments at 345 kb in size, chromosome 6 containing the construct for amplification originally (e.g. NS) or containing slight amplification at size from 290 to 320 kb were detected.

Then, the above chromosomal DNA was digested with a restriction enzyme (SmaI) and separated by FIGE. The result of Southern blot for structural analysis using leu2d probe is shown in FIG. 6(b).

Based on these results, the structure of the amplified product was elucidated as follows.

Smal fragments with about 11 kb (10.9 and 11.1 kb) and 17 kb (16.8 kb) in size were detected from clones with strong signal highly amplified products (i) on chromosome (FIG. 6 (a) (i) #32, 48, 52, 53: black lanes). These fragments were derived from the product with inversions through lox pairs in a designed DRCR product and deemed to contain highly

<160> NUMBER OF SEQ ID NOS: 8

12

repeated sequence containing leu2d with at least more than several tens of copies, as shown in FIG. 7.

In contrast, mini chromosome (FIG. 6 (ii)) observed in most of clones (grey lanes) generated SmaI amplified fragments at about 6.3 kb in size. It is interpreted that these fragments are generated through reversal of replication from telomere side of the structure by Cre-loxP recombination, and that these fragments present as multi-copies, as shown in FIG. 8.

In addition to the above fragments, chromosomal products without inversions (FIG. 7(a), #34, 41, 47) and other types of mini chromosome (FIG. 9, #29-31, 49, 56) through reversal of replication by similar recombination are observed. Furthermore, a number of clones containing both amplified product on chromosome and mini chromosome are detected (#22, 31, 34, 41, 47, 58). Also, weak signal originating from four fragments in addition to two Smal fragments (* of FIG. 6 (b)) derived from host cell lines are confirmed in the construct not amplified (NS of FIG. 6 (b), FIG. 10).

Highly amplified products through the expected molecular mechanism was observed (#32, 48, 52 and 53). Since these products are observed in one tenth of the analyzed clones, these type of amplification occurred at frequency of one tenth of the total colony forming frequency 4.4%, i.e. 0.44%.

SEQUENCE LISTING

```
<210> SEQ ID NO 1
<211> LENGTH: 5732
<212> TYPE: DNA
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Artificially synthesized replication unit
<400> SEQUENCE: 1
ataacttcgt ataatgtatg ctatacgaag ttatggatct agaggttaac taagcgaatt
                                                                       60
tcttatqatt tatqattttt attattaaat aaqttataaa aaaaataaqt qtatacaaat
                                                                      120
tttaaagtga ctcttaggtt ttaaaacgaa aattcttatt cttgagtaac tctttcctgt
                                                                      180
aggtcaggtt gctttctcag gtatagcatg aggtcgctct tattgaccac atctctaccg
                                                                      240
qcatqccqaq caaatqcctq caaatcqctc cccatttcac ccaattqtaq atatqctaac
                                                                      300
tccagcaatg agttgatgaa tctcggtgtg tattttatgt cctcagagga caacacctgt
                                                                      360
tgtaatcgtt cttccacacg gatcttatat atatttcaag gatataccat tctaatgtct
                                                                      420
gcccctaaga agatcgtcgt tttgccaggt gaccacgttg gtcaagaaat cacagccgaa
                                                                      480
gccattaagg ttcttaaagc tatttctgat gttcgttcca atgtcaagtt cgatttcgaa
                                                                      540
aatcatttaa ttggtggtgc tgctatcgat gctacaggtg tcccacttcc agatgaggcg
                                                                      600
ctggaagcct ccaagaaggt tgatgccgtt ttgttaggtg ctgtgggtgg tcctaaatgg
                                                                      660
ggtaccggta gtgttagacc tgaacaaggt ttactaaaaa tccgtaaaga acttcaattg
                                                                      720
tacgccaact taagaccatg taactttgca tocgactoto ttttagactt atotocaato
                                                                      780
aagccacaat ttgctaaagg tactgacttc gttgttgtca gagaattagt gggaggtatt
                                                                      840
tactttggta agagaaagga agacgatggt gatggtgtcg cttgggatag tgaacaatac
                                                                      900
accepttccag aagtgcaaag aatcacaaga atggccgctt tcatggccct acaacatgag
                                                                      960
ccaccattgc ctatttggtc cttggataaa gctaatgttt tggcctcttc aagattatgg
```

-continued

agaaaaactg	tggaggaaac	catcaagaac	gaattcccta	cattgaaggt	tcaacatcaa	1080
ttgattgatt	ctgccgccat	gatectagtt	aagaacccaa	cccacctaaa	tggtattata	1140
atcaccagca	acatgtttgg	tgatatcatc	tccgatgaag	cctccgttat	cccaggttcc	1200
ttgggtttgt	tgccatctgc	gtccttggcc	tctttgccag	acaagaacac	cgcatttggt	1260
ttgtacgaac	catgccacgg	ttctgctcca	gatttgccaa	agaataaggt	caaccctatc	1320
gccactatct	tgtctgctgc	aatgatgttg	aaattgtcat	tgaacttgcc	tgaagaaggt	1380
aaggccattg	aagatgcagt	taaaaaggtt	ttggatgcag	gtatcagaac	tggtgattta	1440
ggtggttcca	acagtaccac	ggaagtcggt	gatgetgteg	ccgaagaagt	taagaaaatc	1500
cttgcttaaa	aagattctct	ttttttatga	tatttgtaca	taaactttat	aaatgaaatt	1560
cataatagaa	acgacacgaa	attacaaaat	ggaatatgtt	catagggtag	acgaaactat	1620
atacgcaatc	tacatacatt	tatcaagaag	gagaaaaagg	aggatgtaaa	ggaatacagg	1680
taagcaaatt	gatactaatg	gctcaacgtg	ataaggaaaa	agaattgcac	tttaacatta	1740
atattgacaa	ggaggagggc	accacacaaa	aagttaggtg	taacagaaaa	tcatgaaact	1800
atgattccta	atttatatat	tggaggattt	tctctaaaaa	aaaaaaaata	caacaaataa	1860
aaaacactca	atgacctgac	catttgatgg	agtttaagtc	aataccttct	tgaaccattt	1920
cccataatgg	tgaaagttcc	ctcaagaatt	ttactctgtc	agaaacggcc	ttaacgacgt	1980
agtcgacgga	tcgatctttt	atgcttgctt	ttcaaaaggc	ctgcaggcaa	gtgcacaaac	2040
aatacttaaa	taaatactac	tcagtaataa	cctatttctt	agcatttttg	acgaaatttg	2100
ctattttgtt	agagtctttt	acaccatttg	tctccacacc	tccgcttaca	tcaacaccaa	2160
taacgccatt	taatctaagc	gcatcaccaa	cattttctgg	cgtcagtcca	ccagctaaca	2220
taaaatgtaa	gctttcgggg	ctctcttgcc	ttccaaccca	gtcagaaatc	gagttccaat	2280
ccaaaagttc	acctgtccca	cctgcttctg	aatcaaacaa	gggaataaac	gaatgaggtt	2340
tctgtgaagc	tgcactgagt	agtatgttgc	agtcttttgg	aaatacgagt	cttttaataa	2400
ctggcaaacc	gaggaactct	tggtattctt	gccacgactc	atctccatgc	agttggacga	2460
tatcaatgcc	gtaatcattg	accagagcca	aaacatcctc	cttaggttga	ttacgaaaca	2520
cgccaaccaa	gtatttcgga	gtgcctgaac	tatttttata	tgcttttaca	agacttgaaa	2580
ttttccttgc	aataaccggg	tcaattgttc	tctttctatt	gggcacacat	ataataccca	2640
gcaagtcagc	atcggaatct	agagcacatt	ctgcggcctc	tgtgctctgc	aagccgcaaa	2700
ctttcaccaa	tggaccagaa	ctacctgtga	aattaataac	agacatactc	caagctgcct	2760
ttgtgtgctt	aatcacgtat	actcacgtgc	tcaatagtca	ccaatgccct	ccctcttggc	2820
cctctccttt	tctttttcg	accgatccgt	cgaccgatgc	ccttgagagc	cttcaaccca	2880
gtcagctcct	tccggtgggc	gcggggcatg	actatcgtcg	ccgcacttat	gactgtcttc	2940
tttatcatgc	aactcgtagg	acaggtgccg	gcagcgctct	teegetteet	cgctcactga	3000
ctcgctgcgc	teggtegtte	ggctgcggcg	agcggtatca	gctcactcaa	aggcggtaat	3060
acggttatcc	acagaatcag	gggataacgc	aggaaagaac	atgtgagcaa	aaggccagca	3120
aaaggccagg	aaccgtaaaa	aggccgcgtt	gctggcgttt	ttccataggc	teegeeeee	3180
tgacgagcat	cacaaaaatc	gacgctcaag	tcagaggtgg	cgaaacccga	caggactata	3240
aagataccag	gcgtttcccc	ctggaagctc	cctcgtgcgc	tctcctgttc	cgaccctgcc	3300
				gtggcgcttt		3360
				aagctgggct		3420
	Lacocoagec	- 55 - 5 - 45 5 -	-59		Jogogodoga	

-continued

accccccgtt	cagcccgacc	gctgcgcctt	atccggtaac	tatcgtcttg	agtccaaccc	3480
ggtaagacac	gacttatcgc	cactggcagc	agccactggt	aacaggatta	gcagagcgag	3540
gtatgtaggc	ggtgctacag	agttcttgaa	gtggtggcct	aactacggct	acactagaag	3600
aacagtattt	ggtatctgcg	ctctgctgaa	gccagttacc	ttcggaaaaa	gagttggtag	3660
ctcttgatcc	ggcaaacaaa	ccaccgctgg	tagcggtggt	ttttttgttt	gcaagcagca	3720
gattacgcgc	agaaaaaaag	gatctcaaga	agatcctttg	atcttttcta	cggggtctga	3780
cgctcagtgg	aacgaaaact	cacgttaagg	gattttggtc	atgagattat	caaaaaggat	3840
cttcacctag	atccttttaa	attaaaaatg	aagttttaaa	tcaatctaaa	gtatatatga	3900
gtaaacttgg	tctgacagtt	accaatgctt	aatcagtgag	gcacctatct	cagcgatctg	3960
tctatttcgt	tcatccatag	ttgcctgact	ccccgtcgtg	tagataacta	cgatacggga	4020
gggcttacca	tctggcccca	gtgctgcaat	gataccgcga	gacccacgct	caccggctcc	4080
agatttatca	gcaataaacc	agccagccgg	aagggccgag	cgcagaagtg	gtcctgcaac	4140
tttatccgcc	tccatccagt	ctattaattg	ttgccgggaa	gctagagtaa	gtagttcgcc	4200
agttaatagt	ttgcgcaacg	ttgttgccat	tgctacaggc	atcgtggtgt	cacgctcgtc	4260
gtttggtatg	gcttcattca	geteeggtte	ccaacgatca	aggcgagtta	catgatecee	4320
catgttgtgc	aaaaaagcgg	ttagctcctt	cggtcctccg	atcgttgtca	gaagtaagtt	4380
ggccgcagtg	ttatcactca	tggttatggc	agcactgcat	aattctctta	ctgtcatgcc	4440
atccgtaaga	tgcttttctg	tgactggtga	gtactcaacc	aagtcattct	gagaatagtg	4500
tatgcggcga	ccgagttgct	cttgcccggc	gtcaatacgg	gataataccg	cgccacatag	4560
cagaacttta	aaagtgctca	tcattggaaa	acgttcttcg	gggcgaaaac	tctcaaggat	4620
cttaccgctg	ttgagatcca	gttcgatgta	acccactcgt	gcacccaact	gatetteage	4680
atcttttact	ttcaccagcg	tttctgggtg	agcaaaaaca	ggaaggcaaa	atgccgcaaa	4740
aaagggaata	agggcgacac	ggaaatgttg	aatactcata	ctcttccttt	ttcaatatta	4800
ttgaagcatt	tatcagggtt	attgtctcat	gagcggatac	atatttgaat	gtatttagaa	4860
aaataaacaa	ataggggttc	cgcgcacatt	tccccgaaaa	gtgccacctg	acgcgccctg	4920
tagcggcgca	ttaagcgcgg	cgggtgtggt	ggttacgcgc	agcgtgaccg	ctacacttgc	4980
cagegeeeta	gegeeegete	ctttcgcttt	cttcccttcc	tttctcgcca	cgttcgccgg	5040
ctttccccgt	caagctctaa	atcgggggct	ccctttaggg	ttccgattta	gtgctttacg	5100
gcacctcgac	cccaaaaaac	ttgattaggg	tgatggttca	cgtagtgggc	categeeetg	5160
atagacggtt	tttcgccctt	tgacgttgga	gtccacgttc	tttaatagtg	gactcttgtt	5220
ccaaactgga	acaacactca	accctatctc	ggtctattct	tttgatttat	aagggatttt	5280
gccgatttcg	gcctattggt	taaaaaatga	gctgatttaa	caaaaattta	acgcgaattt	5340
taacaaaata	ttaacgctta	caatttgcca	ttcgccattc	aggetgegea	actgttggga	5400
agggcgatcg	gtgcgggcct	cttcgctatt	acgccagccc	aagctaccat	gataagtaag	5460
taatattaag	gtacgggagg	tacttggagc	ggccgcaata	aaatatcttt	attttcatta	5520
catctgtgtg	ttggtttttt	gtgtgaatcg	atagtactaa	catacgctct	ccatcaaaac	5580
aaaacgaaac	aaaacaaact	agcaaaatag	gctgtcccca	gtgcaagtgc	aggtgccaga	5640
acatttctct	atcgataggt	accgagctct	tacgcgtgct	agcccgggct	cgagatctat	5700
aacttcgtat	agcatacatt	atacgaagtt	at			5732

-continued

<210> SEQ ID NO 2 <211> LENGTH: 5923 <212> TYPE: DNA

<213> ORGANISM: Artificial sequence <220> FEATURE:

<223> OTHER INFORMATION: Artificially synthesized replication unit

<400> SEQUENCE: 2

ataacttcgt	ataagaaacc	atatacgaag	ttatagatct	cgagcccggg	ctagcacgcg	60
taagagctcg	gtacctatcg	atagagaaat	gttctggcac	ctgcacttgc	actggggaca	120
gcctattttg	ctagtttgtt	ttgtttcgtt	ttgttttgat	ggagagcgta	tgttagtact	180
atcgattcac	acaaaaaacc	aacacacaga	tgtaatgaaa	ataaagatat	tttattgcgg	240
ccgctccaag	tacctcccgt	accttaatat	tacttactta	tcatggtagc	ttgggctggc	300
gtaatagcga	agaggcccgc	accgatcgcc	cttcccaaca	gttgcgcagc	ctgaatggcg	360
aatggcaaat	tgtaagcgtt	aatattttgt	taaaattcgc	gttaaatttt	tgttaaatca	420
gctcattttt	taaccaatag	gccgaaatcg	gcaaaatccc	ttataaatca	aaagaataga	480
ccgagatagg	gttgagtgtt	gttccagttt	ggaacaagag	tccactatta	aagaacgtgg	540
actccaacgt	caaagggcga	aaaaccgtct	atcagggcga	tggcccacta	cgtgaaccat	600
caccctaatc	aagtttttg	gggtcgaggt	gccgtaaagc	actaaatcgg	aaccctaaag	660
ggagcccccg	atttagagct	tgacggggaa	agccggcgaa	cgtggcgaga	aaggaaggga	720
agaaagcgaa	aggageggge	gctagggcgc	tggcaagtgt	ageggteaeg	ctgcgcgtaa	780
ccaccacacc	cgccgcgctt	aatgcgccgc	tacagggcgc	gtcaggtggc	acttttcggg	840
gaaatgtgcg	cggaacccct	atttgtttat	ttttctaaat	acattcaaat	atgtatccgc	900
tcatgagaca	ataaccctga	taaatgcttc	aataatattg	aaaaaggaag	agtatgagta	960
ttcaacattt	ccgtgtcgcc	cttattccct	tttttgcggc	attttgcctt	cctgtttttg	1020
ctcacccaga	aacgctggtg	aaagtaaaag	atgctgaaga	tcagttgggt	gcacgagtgg	1080
gttacatcga	actggatctc	aacagcggta	agatccttga	gagttttcgc	cccgaagaac	1140
gttttccaat	gatgagcact	tttaaagttc	tgctatgtgg	cgcggtatta	tecegtattg	1200
acgccgggca	agagcaactc	ggtcgccgca	tacactattc	tcagaatgac	ttggttgagt	1260
actcaccagt	cacagaaaag	catcttacgg	atggcatgac	agtaagagaa	ttatgcagtg	1320
ctgccataac	catgagtgat	aacactgcgg	ccaacttact	tctgacaacg	atcggaggac	1380
cgaaggagct	aaccgctttt	ttgcacaaca	tgggggatca	tgtaactcgc	cttgatcgtt	1440
gggaaccgga	gctgaatgaa	gccataccaa	acgacgagcg	tgacaccacg	atgcctgtag	1500
caatggcaac	aacgttgcgc	aaactattaa	ctggcgaact	acttactcta	gcttcccggc	1560
aacaattaat	agactggatg	gaggcggata	aagttgcagg	accacttctg	cgctcggccc	1620
ttccggctgg	ctggtttatt	gctgataaat	ctggagccgg	tgagcgtggg	tctcgcggta	1680
tcattgcagc	actggggcca	gatggtaagc	cctcccgtat	cgtagttatc	tacacgacgg	1740
ggagtcaggc	aactatggat	gaacgaaata	gacagatcgc	tgagataggt	gcctcactga	1800
ttaagcattg	gtaactgtca	gaccaagttt	actcatatat	actttagatt	gatttaaaac	1860
ttcattttta	atttaaaagg	atctaggtga	agatcctttt	tgataatctc	atgaccaaaa	1920
tcccttaacg	tgagttttcg	ttccactgag	cgtcagaccc	cgtagaaaag	atcaaaggat	1980
cttcttgaga	tcctttttt	ctgcgcgtaa	tctgctgctt	gcaaacaaaa	aaaccaccgc	2040
	ggtttgtttg					2100
5 55	5 5	3	-	3	3	

-continued	

						0160
			ttcttctagt			2160
			acctcgctct			2220
			ccgggttgga			2280
			gttcgtgcac			2340
cgacctacac	cgaactgaga	tacctacagc	gtgagctatg	agaaagcgcc	acgcttcccg	2400
aagggagaaa	ggcggacagg	tatccggtaa	gcggcagggt	cggaacagga	gagcgcacga	2460
gggagcttcc	agggggaaac	gcctggtatc	tttatagtcc	tgtcgggttt	cgccacctct	2520
gacttgagcg	tcgatttttg	tgatgctcgt	caggggggcg	gagcctatgg	aaaaacgcca	2580
gcaacgcggc	ctttttacgg	tteetggeet	tttgctggcc	ttttgctcac	atgttctttc	2640
ctgcgttatc	ccctgattct	gtggataacc	gtattaccgc	ctttgagtga	gctgataccg	2700
ctcgccgcag	ccgaacgacc	gagcgcagcg	agtcagtgag	cgaggaagcg	gaagagcgct	2760
gccggcacct	gtcctacgag	ttgcatgata	aagaagacag	tcataagtgc	ggcgacgata	2820
gtcatgcccc	gegeecaceg	gaaggagctg	actgggttga	aggctctcaa	gggcatcggt	2880
cgacggatcc	tacataaatg	tgagcaagcg	aaaaaaaaa	attggcatta	taaaccatca	2940
ttttcgatga	aataatcaat	caacgtagat	aagctgatat	tatataattt	tggtctgttc	3000
gtgttgattt	tatcactgat	ggactttggc	atacagatag	tgacaatttc	gttattgaac	3060
cattgagaat	ggaaaatcaa	tggaacttca	tccagagtta	tgcacataga	agctccctca	3120
gccggaaaaa	agctgatagc	gccaaaatct	attagtgaca	agtctgtgtt	aaggccagtt	3180
ccagtaaatt	ttgtatacga	ctccttcaag	gaccataagt	aagtaaatat	tgtgcatgga	3240
tcagacgctt	tcagtaaacc	gttaaattct	ctttcactaa	aaacttcttt	aaatagctcc	3300
aactcttccc	tcccgccata	attgcacgga	gaagcgatat	caattccgac	atcctggtat	3360
tcatctgtac	ttacacattt	tacgaggaac	atagctacat	attgttcacc	gatggtcatg	3420
ctaaatggaa	gaaaacgatt	gttgtctaag	aatggcttac	cgaagctgcc	cttgtcaaat	3480
ttcagctctt	gaaaatttaa	gcccgttact	atagagcagc	caaacaactg	cagcagctgg	3540
ctgcatagat	ttgaacatct	atcgtgaaac	gattttttat	tgaggattct	ggcttgagac	3600
gccaatggca	aagttctcat	taatgcctcg	aacgtaaact	catccgcgag	tatatcctct	3660
tgaatttcaa	caacgaatat	acctgcccat	ggtcttacac	ctgccacctt	tgaaacttcg	3720
cttactactt	cagtcgtttt	aaccatccac	ggtttttttg	ctgagtgatt	ctctttctcc	3780
tcattctcat	tttagtcata	gcggttttaa	taagegeeeg	aaagataatt	gtaaaacata	3840
tattcaatgc	ttaaaaatat	aagaaattgc	ccatcaattt	gaaaactcaa	gtaaaacaga	3900
gaagttgtaa	ggtgaataag	gaatgagtga	ggatccgtcg	actacgtcgt	taaggccgtt	3960
tctgacagag	taaaattctt	gagggaactt	tcaccattat	gggaaatggt	tcaagaaggt	4020
attgacttaa	actccatcaa	atggtcaggt	cattgagtgt	tttttatttg	ttgtattttt	4080
			aattaggaat			4140
			tccttgtcaa			4200
			atcaatttgc			4260
			gtagattgcg			4320
atgaacatat	tccattttgt	aatttcgtgt	cgtttctatt	atgaatttca	tttataaagt	4380
ttatgtacaa	atatcataaa	aaaagagaat	ctttttaagc	aaggattttc	ttaacttctt	4440

-continued

-continued	
cggcgacagc atcaccgact tccgtggtac tgttggaacc acctaaatca ccagttctga	4500
tacctgcatc caaaaccttt ttaactgcat cttcaatggc cttaccttct tcaggcaagt	4560
tcaatgacaa tttcaacatc attgcagcag acaagatagt ggcgataggg ttgaccttat	4620
tetttggcaa atetggagea gaacegtgge atggttegta caaaceaaat geggtgttet	4680
tgtctggcaa agaggccaag gacgcagatg gcaacaaacc caaggaacct gggataacgg	4740
aggetteate ggagatgata teaccaaaca tgttgetggt gattataata ecatttaggt	4800
gggttgggtt cttaactagg atcatggcgg cagaatcaat caattgatgt tgaaccttca	4860
atgtagggaa ctcgttcttg atggtttcct ccacagtttt tctccataat cttgaagagg	4920
ccaaaacatt agctttatcc aaggaccaaa taggcaatgg tggctcatgt tgtagggcca	4980
tgaaagcggc cattettgtg attetttgca ettetggaac ggtgtattgt teactatece	5040
aagcgacacc atcaccatcg tetteettte tettaccaaa gtaaatacet eccactaatt	5100
ctctgacaac aacgaagtca gtacctttag caaattgtgg cttgattgga gataagtcta	5160
aaagagagtc ggatgcaaag ttacatggtc ttaagttggc gtacaattga agttctttac	5220
ggatttttag taaaccttgt tcaggtctaa cactaccggt accccattta ggaccaccca	5280
cagcacctaa caaaacggca tcaaccttct tggaggcttc cagcgcctca tctggaagtg	5340
ggacacctgt agcatcgata gcagcaccac caattaaatg attttcgaaa tcgaacttga	5400
cattggaacg aacatcagaa atagctttaa gaaccttaat ggcttcggct gtgatttctt	5460
gaccaacgtg gtcacctggc aaaacgacga tcttcttagg ggcagacatt agaatggtat	5520
atccttgaaa tatatataag atccgtgtgg aagaacgatt acaacaggtg ttgtcctctg	5580
aggacataaa atacacaccg agattcatca actcattgct ggagttagca tatctacaat	5640
tgggtgaaat ggggagcgat ttgcaggcat ttgctcggca tgccggtaga gatgtggtca	5700
ataagagcga ceteatgeta taeetgagaa agcaacetga eetacaggaa agagttaete	5760
aagaataaga attttcgttt taaaacctaa gagtcacttt aaaatttgta tacacttatt	5820
ttttttataa cttatttaat aataaaaatc ataaatcata agaaattcgc ttagttaacc	5880
tctagatcca taacttcgta tatggtttct tatacgaagt tat	5923
<210> SEQ ID NO 3 <211> LENGTH: 840 <212> TYPE: DNA <213> ORGANISM: Saccharomyces cerevisiae	
<400> SEQUENCE: 3	
aggtggagcg caggtcatag gtatgccggc tcattgtttt ctattttaaa aagtaaaaaa	60
tatgctgcta aaggaacacg tgagaaatta cattctccct aggtctgcga taacgcggta	120
atattacact gccgccgcct tccatgcctt tggaaagcag acaatgatgc taggcggcgc	180
ccagcagtat aaacttttct tgcttataac cagaacctct atcacaaaat tagaaactgc	240
gatactatgg gtcagatcga cacataggga gcactattag gcgcaaggcg tatacatagg	300
cattgcgtgt tcaaaaattg tcgtatgaga aaagttccaa actttccacc attactcacc	360
aacaacttac accagecegg atttaagatt tagetteega gaatattgtg acteagecae	420
tggtctcttg aatgttgcgt gtagcttgat taagattatg gcataaccgt tttttttact	480
tggcaagagt gaacgtcctt ttactccaaa aggctcctga tgaaactgga gagtctcttt	540
gttctgaaat ttttaaagtt tagcacacca tattcacgct cgaggtgaac ccaagttttc	600

660

ctgaaaaatg tgccatgaac ctgaaaaaaa gaattattct cgaaaataaa aaaggcaatc

-continued

aagatcggaa agataagcat t	ttttttcaa	tccgtatcta	acattcataa	agtgataaaa	720
aaattgataa cgattttatt g	gtegeetett	gttttgagta	tatttttta	acgttctttt	780
teggeattea aatteegtat a	aatcaactca	attgtaaggc	gccgtagcat	ccaaataatg	840
<210> SEQ ID NO 4 <211> LENGTH: 669 <212> TYPE: DNA <213> ORGANISM: Sacchar	romyces cer	revisiae			
<400> SEQUENCE: 4					
ttgaaagtgc caatttgctc a	atcagtgcta	aatattcctt	gataaaaata	tagaagacaa	60
ggacatataa aaagaaagac t	tgctctagtg	ttgggacacc	acaatgaaaa	aatacttaac	120
gtgtttcgaa actgtgaata t	taaaattcca	gcaaaaacca	aaatattcac	tacaatgatt	180
gategtaceg agttategaa g	gtttggtatt	actacgcaac	tgtctgttat	tggacgtaat	240
ccagatgaac aaagtggctt t	tgttaatcca	cctttgtata	aggggtcaac	catcattctt	300
aaaaaactta gtgatttaga a	acaaaggaaa	ggaagatttt	acgggacagc	aggttctcca	360
actattgaca atttagaaaa t	tgcctggacg	catttaaccg	geggtgetgg	gacagtgcta	420
tcagcttctg ggcttggttc t	tatctctttg	gcgctattgg	ccctttcgaa	agctggtgat	480
catatettga tgaetgatag t	tgtctacgtg	ccaacacgta	tgctatgtga	tggtttattg	540
gccaagttcg gtgttgaaac g	ggattattat	gacccatcaa	tagggaagga	tatagaaaaa	600
ctagttaagc caaatacaac c	cgtcattttc	ctcgaaagcc	cgggttctgg	gaccatggaa	660
gtacaggat					669
<pre><210> SEQ ID NO 5 <211> LENGTH: 881 <212> TYPE: DNA <213> ORGANISM: Sacchar <400> SEQUENCE: 5</pre>	romyces cei	revisiae			
<211> LENGTH: 881 <212> TYPE: DNA <213> ORGANISM: Sacchar			tgtegettte	gaagaagcta	60
<211> LENGTH: 881 <212> TYPE: DNA <213> ORGANISM: Sacchar <400> SEQUENCE: 5	ttgaggttca	gatttgctac			60 120
<211> LENGTH: 881 <212> TYPE: DNA <213> ORGANISM: Sacchar <400> SEQUENCE: 5 gcaactaaaa cgcccgtgga t	ttgaggttca ttctgcatct	gatttgctac aatgtgttca	ataaatattg	agtgacgtta	
<211> LENGTH: 881 <212> TYPE: DNA <213> ORGANISM: Sacchar <400> SEQUENCE: 5 gcaactaaaa cgcccgtgga t gatgaaccac gggtaaagta t	ttgaggttca ttctgcatct caccgctaga	gatttgctac aatgtgttca aaatgctggt	ataaatattg gtgaatgtga	agtgacgtta atgacgatag	120
<pre><211> LENGTH: 881 <212> TYPE: DNA <213> ORGANISM: Sacchar <400> SEQUENCE: 5 gcaactaaaa cgcccgtgga t gatgaaccac gggtaaagta t tcgtaatgtt acagtactaa c</pre>	ttgaggttca ttctgcatct caccgctaga attgtacgat	gatttgctac aatgtgttca aaatgctggt aacattactt	ataaatattg gtgaatgtga acaagattgg	agtgacgtta atgacgatag gagaagcatg	120 180
<pre><211> LENGTH: 881 <212> TYPE: DNA <213> ORGANISM: Sacchar <400> SEQUENCE: 5 gcaactaaaa cgcccgtgga t gatgaaccac gggtaaagta t tcgtaatgtt acagtactaa c acggactgat gcacttttcc a</pre>	ttgaggttca ttctgcatct caccgctaga attgtacgat	gatttgctac aatgtgttca aaatgctggt aacattactt attaggagtg	ataaatattg gtgaatgtga acaagattgg gcggtattag	agtgacgtta atgacgatag gagaagcatg tagaaaattg	120 180 240
<pre><211> LENGTH: 881 <212> TYPE: DNA <213> ORGANISM: Sacchar <400> SEQUENCE: 5 gcaactaaaa cgcccgtgga t gatgaaccac gggtaaagta t tcgtaatgtt acagtactaa c acggactgat gcacttttcc a attgaaaatt tgactggaag a</pre>	ttgaggttca ttctgcatct caccgctaga attgtacgat aaccacttat	gatttgctac aatgtgttca aaatgctggt aacattactt attaggagtg taaagtttcc	ataaatattg gtgaatgtga acaagattgg gcggtattag ttgggtgcac	agtgacgtta atgacgatag gagaagcatg tagaaaattg tgttttgggc	120 180 240 300
<pre><211> LENGTH: 881 <212> TYPE: DNA <213> ORGANISM: Sacchar <400> SEQUENCE: 5 gcaactaaaa cgcccgtgga t gatgaaccac gggtaaagta t tcgtaatgtt acagtactaa c acggactgat gcacttttcc a attgaaaatt tgactggaag a actaaacgca tccgaaaatt a</pre>	ttgaggttca ttctgcatct caccgctaga attgtacgat aaccacttat aaatagaatt	gatttgctac aatgtgttca aaatgctggt aacattactt attaggagtg taaagtttcc caggttactt	ataaatattg gtgaatgtga acaagattgg gcggtattag ttgggtgcac gtttgcatac	agtgacgtta atgacgatag gagaagcatg tagaaaattg tgttttgggc agacattact	120 180 240 300 360
<pre><211> LENGTH: 881 <212> TYPE: DNA <213> ORGANISM: Sacchar <400> SEQUENCE: 5 gcaactaaaa cgcccgtgga t gatgaaccac gggtaaagta t tcgtaatgtt acagtactaa c acggactgat gcacttttcc a attgaaaatt tgactggaag a actaaacgca tccgaaaatt a tgcagtgcta aaatccagaa g</pre>	ttgaggttca ttctgcatct caccgctaga attgtacgat aaccacttat aaatagaatt gtgttggagt	gatttgctac aatgtgttca aaatgctggt aacattactt attaggagtg taaagtttcc caggttactt cgagataagg	ataaatattg gtgaatgtga acaagattgg gcggtattag ttgggtgcac gtttgcatac aagtgtcctc	agtgacgtta atgacgatag gagaagcatg tagaaaattg tgttttgggc agacattact taaatgcaat	120 180 240 300 360 420
<pre><211> LENGTH: 881 <212> TYPE: DNA <213> ORGANISM: Sacchar <400> SEQUENCE: 5 gcaactaaaa cgcccgtgga t gatgaaccac gggtaaagta t tcgtaatgtt acagtactaa c acggactgat gcacttttcc a attgaaaatt tgactggaag a actaaacgca tccgaaaatt a tgcagtgcta aaatccagaa g gaagttttca gaaggccttt g gaagttttca gaaggccttt g</pre>	ttgaggttca ttctgcatct caccgctaga attgtacgat aaccacttat aaatagaatt gtgttggagt gaatcgagaa	gatttgctac aatgtgttca aaatgctggt aacattactt attaggagtg taaagtttcc caggttactt cgagataagg gaaacttgat	ataaatattg gtgaatgtga acaagattgg gcggtattag ttgggtgcac gtttgcatac aagtgtcctc ttagttaatg	agtgacgtta atgacgatag gagaagcatg tagaaaattg tgttttgggc agacattact taaatgcaat gcctttagat	120 180 240 300 360 420 480
<pre><211> LENGTH: 881 <212> TYPE: DNA <213> ORGANISM: Sacchar <400> SEQUENCE: 5 gcaactaaaa cgcccgtgga t gatgaaccac gggtaaagta t tcgtaatgtt acagtactaa c acggactgat gcacttttcc a attgaaaatt tgactggaag a actaaacgca tccgaaaatt a tgcagtgcta aaatccagaa g gaagttttca gaaggccttt g tttagagctc aaagtgagga t</pre>	ttgaggttca ttctgcatct caccgctaga attgtacgat aaccacttat aaatagaatt gtgttggagt gaatcgagaa tagtggcact	gatttgctac aatgtgttca aaatgctggt aacattactt attaggagtg taaagtttcc caggttactt cgagataagg gaaacttgat aagctcacaa	ataaatattg gtgaatgtga acaagattgg gcggtattag ttgggtgcac gtttgcatac aagtgtcctc ttagttaatg aatggagttc	agtgacgtta atgacgatag gagaagcatg tagaaaattg tgttttgggc agacattact taaatgcaat gcctttagat tagttgccct	120 180 240 300 360 420 480 540
<pre><211> LENGTH: 881 <212> TYPE: DNA <213> ORGANISM: Sacchar <400> SEQUENCE: 5 gcaactaaaa cgcccgtgga t gatgaaccac gggtaaagta t tcgtaatgtt acagtactaa c acggactgat gcacttttcc a attgaaaatt tgactggaag a actaaacgca tccgaaaatt a tgcagtgcta aaatccagaa g gaagttttca gaaggccttt g tttagagctc aaagtgagga t ttgctgctgt ctgaaaagct c</pre>	ttgaggttca ttctgcatct caccgctaga attgtacgat aaccacttat aaatagaatt gtgttggagt gaatcgagaa tagtggcact catcatcgag	gatttgctac aatgtgttca aaatgctggt aacattactt attaggagtg taaagtttcc caggttactt cgagataagg gaaacttgat aagctcacaa ataagtattt	ataaatattg gtgaatgtga acaagattgg gcggtattag ttgggtgcac gtttgcatac aagtgtcctc ttagttaatg aatggagttc gaattgtaag	agtgacgtta atgacgatag gagaagcatg tagaaaattg tgttttgggc agacattact taaatgcaat gcctttagat tagttgccct	120 180 240 300 360 420 480 540 600
<pre><211> LENGTH: 881 <212> TYPE: DNA <213> ORGANISM: Sacchar <400> SEQUENCE: 5 gcaactaaaa cgcccgtgga t gatgaaccac gggtaaagta t tcgtaatgtt acagtactaa c acggactgat gcacttttcc a attgaaaatt tgactggaag a actaaacgca tccgaaaatt a tgcagtgcta aaatccagaa g gaagttttca gaaggccttt g tttagagctc aaagtgagga t ttgctgctgt ctgaaaagct c ttcactatac aatcgatgta a</pre>	ttgaggttca ttctgcatct caccgctaga attgtacgat aaccacttat aaatagaatt gtgttggagt gaatcgagaa tagtggcact catcatcgag aagatggctt	gatttgctac aatgtgttca aaatgctggt aacattactt attaggagtg taaagtttcc caggttactt cgagataagg gaaacttgat aagctcacaa ataagtattt	ataaatattg gtgaatgtga acaagattgg gcggtattag ttgggtgcac gtttgcatac aagtgtcctc ttagttaatg aatggagttc gaattgtaag	agtgacgtta atgacgatag gagaagcatg tagaaaattg tgttttgggc agacattact taaatgcaat gcctttagat tagttgccct ttttgtgcta attatttcca	120 180 240 300 360 420 480 540 600 660
<pre><211> LENGTH: 881 <212> TYPE: DNA <213> ORGANISM: Sacchar <400> SEQUENCE: 5 gcaactaaaa cgcccgtgga t gatgaaccac gggtaaagta t tcgtaatgtt acagtactaa c acggactgat gcacttttcc a attgaaaatt tgactggaag a actaaacgca tccgaaaatt a tgcagtgcta aaatccagaa g gaagttttca gaaggccttt g tttagagctc aaagtgagga t ttgctgctgt ctgaaaaagct c ttcactatac aatcgatgta a gctgaggaat caaaaaatgt a gctgaggaat caaaaaatgt a </pre>	ttgaggttca ttctgcatct caccgctaga attgtacgat aaccacttat aaatagaatt gtgttggagt gaatcgagaa tagtggcact catcatcgag aagatggctt atttagtgct	gatttgctac aatgtgttca aaatgctggt aacattactt attaggagtg taaagtttcc caggttactt cgagataagg gaaacttgat aagctcacaa ataagtattt tccttactgg	ataaatattg gtgaatgtga acaagattgg gcggtattag ttgggtgcac gtttgcatac aagtgtcctc ttagttaatg aatggagttc gaattgtaag tcaattgtgt agtcacttgc	agtgacgtta atgacgatag gagaagcatg tagaaaattg tgttttgggc agacattact taaatgcaat gcctttagat tagttgccct ttttgtgcta attattcca tgattgtgta	120 180 240 300 360 420 480 540 600 660 720
<pre><211> LENGTH: 881 <212> TYPE: DNA <213> ORGANISM: Sacchar <400> SEQUENCE: 5 gcaactaaaa cgcccgtgga t gatgaaccac gggtaaagta t tcgtaatgtt acagtactaa c acggactgat gcacttttcc a attgaaaatt tgactggaag a actaaacgca tccgaaaatt a tgcagtgcta aaatccagaa g gaagttttca gaaggccttt g tttagagctc aaagtgagga t ttgctgctgt ctgaaaagct c ttcactatac aatcgatgta a gctgaggaat caaaaaatgt a gatgaaacag aaaatatgta t</pre>	ttgaggttca ttctgcatct caccgctaga attgtacgat aaccacttat aaatagaatt gtgttggagt gaatcgagaa tagtggcact catcatcgag aagatggctt atttagtgct ttttatggat	gatttgctac aatgtgttca aaatgctggt aacattactt attaggagtg taaagtttcc caggttactt cgagataagg gaaacttgat aagctcacaa ataagtattt tccttactgg tgactaatca ttgcttgaaa	ataaatattg gtgaatgtga acaagattgg gcggtattag ttgggtgcac gtttgcatac aagtgtcctc ttagttaatg aatggagttc gaattgtaag tcaattgtgt agtcacttgc tacaggcagg	agtgacgtta atgacgatag gagaagcatg tagaaaattg tgttttgggc agacattact taaatgcaat gcctttagat tagttgccct ttttgtgcta attattcca tgattgtgta	120 180 240 300 360 420 480 540 600 660 720 780

-continued

<211> LENGTH: 898 <212> TYPE: DNA <213> ORGANISM: Saccharomyces cerevisiae <400> SEQUENCE: 6 aaacccagta atagcatcgt ttaagaaatg gtgcttactt gtaggtaaaa cttctgaagg 60 atactgagta aatgtaaaat tatatgagtt aaggcagaat gactgtaaac ttttgtgacg 120 aatctggaag atgcattcgt cgattggcct tcattaagtg aagattggta acctattgca 180 tccaaaccag aagtaataca accagaatgt ggagatgagg agccaacagg tgtgtatcca gaaggttcag ccacaggttg gtcatcaata ccactggggg agcatgcaat ataatcagat 300 ggttgcgagg aatagctagt agagctaaaa ctgaacacat tagttaagat tagactagcc atgctcaaag aaacaattag agaggcacct acatgttcgt tatccatttt tgaggaaaaa atagaagtga taataataat tttgctcgaa ctactcgtaa agctacttga aaaacggctc 480 qaqattacqq aaqaqtcqqt aqtaaaccqa ctctcaqtqt cacqqaatqq aaqcqccttq 540 aaactactaa tatcaggtat gcattgaggg gcaaggcaac ctgaatatgc aaagagcata 600 gtcttaactt tcgtagtacg taatacttcg gcattaattt ggcctaccgc tttgccacag 660 ttgagtggtc actggagtat tagccatgaa aaaatgatcc cttgtatatc caggcccaaa 720 gtctaaaatg tacttcctgc caatggttgt cacagctaat attccatttt gaattgactt 780 gatttttaga ttattatcat ggaaccaagt tgatgtcttg caatttctga tttttaacga 840 tgtactggag gttgacgact aggcaaatct gcgaaacatc ctagtacaat ggcatttg 898 <210> SEO ID NO 7 <211> LENGTH: 12 <212> TYPE: DNA <213> ORGANISM: Saccharomyces cerevisiae <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(12) <223> OTHER INFORMATION: w can be a or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(12) <223> OTHER INFORMATION: y can be c or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(12) <223> OTHER INFORMATION: r can be a or g <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(12) <223> OTHER INFORMATION: b can be c, g, or t <400> SEQUENCE: 7 wtttayrttt wb 12 <210> SEQ ID NO 8 <211> LENGTH: 1032 <212> TYPE: DNA <213 > ORGANISM: Bacteriophage P1 <400> SEQUENCE: 8 atgtccaatt tactgaccgt acaccaaaat ttgcctgcat taccggtcga tgcaacgagt 60 gatgaggttc gcaagaacct gatggacatg ttcagggatc gccaggcgtt ttctgagcat 120 acctggaaaa tgcttctgtc cgtttgccgg tcgtgggcgg catggtgcaa gttgaataac 180 cggaaatggt ttcccgcaga acctgaagat gttcgcgatt atcttctata tcttcaggcg 240 cgcggtctgg cagtaaaaac tatccagcaa catttgggcc agctaaacat gcttcatcgt 300

What is claimed is:

1. A method for amplifying a target gene, said method comprising:

contacting a transformant with a site-specific recombinase, wherein said transformant comprises a doublestranded DNA represented by a-b-c-d or a-c-b-d, wherein

one of a and b is a double-stranded DNA fragment comprising a first target sequence of a site-specific recombinase, and the other is a double-stranded DNA fragment comprising an inverted sequence of said first target sequence, wherein a first site specific recombination between a and b is induced by the site-specific recombinase; and

one of c and d is a double-stranded DNA fragment comprising a second target sequence of the site-specific recombinase and the other is a double-stranded DNA fragment comprising an inverted sequence of said second target sequence, wherein a 45 second site specific recombination between c and d is induced by the site-specific recombinase;

and wherein

- a replication origin and at least one target gene to be amplified are inserted anywhere between a and d;
- arbitrary DNA sequences may be inserted among said fragments; and
- the first target sequence and the second target sequence of the site-specific recombinase are different; and
- the target gene is amplified by Double Rolling-Circle 55 Replication (DRCR) comprising the first site specific recombination and the second site specific recombination.
- **2**. The method of claim **1**, wherein contacting the transformant with the site-specific recombinase includes any of 60 the following steps:
 - (1) introducing a plasmid constructed to express said site-specific recombinase;
 - (2) transforming said transformant further to express said site-specific recombinase;
 - (3) introducing directly said site-specific recombinase protein.

- 3. The method of claim 1, wherein b and c are combined and said double-stranded DNA is represented by a-b-d, wherein a and d are the same sequence with the same direction and the other letters are the same as defined previously.
- **4**. The method of claim **1**, wherein the double-stranded DNA is represented by a-b-X-c-d or a-c-X-b-d, wherein X represents a replication origin and the other letters are the same as defined previously.
- 5. The method of claim 4, wherein the double-stranded DNA is represented by a-A-b-X-c-B-d or a-A-c-X-b-B-d, wherein at least one of A and B represents the target gene, arbitrary DNA sequences may be inserted among these fragments, and the other letters are the same as defined previously.
- 6. The method of claim 1, wherein each of said the first and the second target sequences is selected from the group comprising loxP, lox511, lox5171, lox2272, lox2372, loxm2, loxFAS, lox71, lox66 and the mutants thereof in a case where the site-specific recombinase is Cre recombinase or its derivative; each of said the first and the second target sequences is selected from the group comprising FRT, F3, F5, FRT mutant-10, FRT mutant+10 and the mutants thereof in a case where the site-specific recombinase is Flp recombinase or its derivative; and each of said the first and the second target sequences is selected from the group comprising attB, attP and the mutants thereof in a case where the site-specific recombinase is phiC31 integrase or its derivative.
- 7. The method of claim 1, wherein the host is an animal cell.
- **8**. A method for amplifying a target gene, said method comprising:
 - (a) providing a double-stranded DNA represented by a-b-c-d or a-c-b-d, wherein
 - one of a and b is a double-stranded DNA fragment comprising a first target sequence of a site-specific recombinase, and the other is a double-stranded DNA fragment comprising an inverted sequence of said first target sequence, wherein a first site specific

25

29

recombination between a and b is induced by the site-specific recombinase; and

one of c and d is a double-stranded DNA fragment comprising a second target sequence of the sitespecific recombinase and the other is a doublestranded DNA fragment comprising an inverted sequence of said second target sequence, wherein a second site specific recombination between c and d is induced by the site-specific recombinase;

and wherein

a replication origin and at least one target gene to be amplified are inserted anywhere between a and d; arbitrary DNA sequences may be inserted among said fragments; and

the first target sequence and the second target sequence 15 of the site-specific recombinase are different;

(b) obtaining a set of double-stranded DNA fragments by dividing the double stranded DNA of (a) into at least two, wherein

each said fragment contains a double-stranded DNA ²⁰ region with at least 50 bp at both ends for homologous recombination;

said double-stranded DNA region for homologous recombination comprises a part of the sequences of a host chromosome or an extrachromosomal element so that the double-stranded DNA can be integrated into the host chromosome or the extrachromosomal element by homologous recombination; and

said replication origin may be a replication origin of a host or an exogeneous origin;

- (c) preparing a transformant, wherein said transformant is prepared by introducing into a host two kinds of the double-stranded DNA of (b), wherein said replication origin locates on a host chromosome or an extrachromosome; and
- (d) affecting said transformant with the site-specific recombinase,

wherein the target gene is amplified by Double Rolling-Circle Replication (DRCR) comprising the first site specific recombination and the second site specific ⁴⁰ recombination.

9. The method of claim 8, wherein the set of double-stranded DNA fragments comprises a double-stranded DNA fragment represented by e-a-A-b-f and a double-stranded DNA fragment represented by g-c-B-d-h, wherein one of a and b is a double-stranded DNA fragment comprising a first target sequence of a site-specific recombinase, and the other is a double-stranded DNA fragment comprising an inverted sequence of said first target sequence; and one of c and d is a double-stranded DNA fragment comprising a second target sequence of the site-specific recombinase and the other is a

30

double-stranded DNA fragment comprising an inverted sequence of said second target sequence; each of letters from e to h is a double-stranded DNA fragment of at least 50 bp in size, which are arranged on a chromosome or an extrachromosomal element that is a host for integration of the set of double-stranded DNA in order of e, f, a replication origin of the chromosome element or the extrachromosomal element, g and h; at least one of A and B represents the target gene to be amplified; and said replication origin or a part of it may be included in f or g; and an arbitrary DNA sequence may be inserted among these.

10. The method of claim 8, wherein each of said the first and the second target sequences is selected from the group comprising loxP, lox511, lox5171, lox2272, lox2372, loxm2, loxFAS, lox71, lox66 and the mutants thereof in a case where the site-specific recombinase is Cre recombinase or its derivative; each of said the first and the second target sequences is selected from the group comprising FRT, F3, F5, FRT mutant–10, FRT mutant+10 and the mutants thereof in a case where the site-specific recombinase is Flp recombinase or its derivative; and each of said the first and the second target sequences is selected from the group comprising attB, attP and the mutants thereof in a case where the site-specific recombinase is phiC31 integrase or its derivative.

11. The method of claim $\mathbf{8}$, wherein the host is an animal cell.

- 12. The method of claim 8, wherein affecting the transformant with the site-specific recombinase includes any of the following steps:
 - (1) introducing a plasmid constructed to express said site-specific recombinase;
 - (2) transforming said transformant further to express said site-specific recombinase; and
 - introducing directly said site-specific recombinase protein.
- 13. The method of claim 1, wherein the double-stranded DNA is configured to generate in the host, after contacting the transformant with the site-specific recombinase, an amplification product comprising concatenated repeats of the double-stranded DNA between a and d, wherein regions between a and b, and/or between c and d, in the concatenated repeats may or may not be inverted in the amplification product relative to the orientation of corresponding regions in the double-stranded DNA.
- 14. The method of claim 1, wherein the at least one target gene is amplified during a single cell cycle.
- 15. The method of claim 1, wherein the replication origin is the replication origin of a host chromosome, fragments of a host chromosome, or an artificial chromosome.

* * * * *